This function refits an rpsftm object with a specific weight applied to control arm efficacy. It is a short cut to recalling rpsftm with same parameters and varying the treat_modifier parameter.

rpsftm.refit(x, k)

Arguments

x

rpsftm object (rpsftm)

k

weight to be applied in the control arm for treatment effect. Single number.

Details

See also documentation for rpsftm call treat_modifier= value.

Examples

# use data included in rpsftm package
library(rpsftm)
immdef <- rpsftm::immdef
immdef$rx <- with(immdef, 1 - xoyrs/progyrs)

# fit the model
imm.fit <- rpsftm(Surv(progyrs, prog) ~ rand(imm, rx),
                  data=immdef,
                  censor_time=censyrs)

rpsftm.refit(imm.fit, k = 0.7)
#>   arm   rx.Min. rx.1st Qu. rx.Median   rx.Mean rx.3rd Qu.   rx.Max.
#> 1   0 0.0000000  0.0000000 0.0000000 0.1574062  0.2547779 0.9770941
#> 2   1 1.0000000  1.0000000 1.0000000 1.0000000  1.0000000 1.0000000
#> Call:
#> rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, 
#>     censor_time = censyrs)
#> 
#>          N Observed Expected (O-E)^2/E (O-E)^2/V
#> .arm=0 500      152      152  4.59e-06  9.51e-06
#> .arm=1 500      143      143  4.88e-06  9.51e-06
#> 
#>  Chisq= 0  on 1 degrees of freedom, p= 1 
#> 
#> psi: -0.1816447
#> exp(psi): 0.8338976 
rpsftm.refit(imm.fit, k = 1.3)
#>   arm   rx.Min. rx.1st Qu. rx.Median   rx.Mean rx.3rd Qu.   rx.Max.
#> 1   0 0.0000000  0.0000000 0.0000000 0.1574062  0.2547779 0.9770941
#> 2   1 1.0000000  1.0000000 1.0000000 1.0000000  1.0000000 1.0000000
#> Call:
#> rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, 
#>     censor_time = censyrs)
#> 
#>          N Observed Expected (O-E)^2/E (O-E)^2/V
#> .arm=0 500      132      132  1.31e-06  2.54e-06
#> .arm=1 500      143      143  1.21e-06  2.54e-06
#> 
#>  Chisq= 0  on 1 degrees of freedom, p= 1 
#> 
#> psi: -0.2096808
#> exp(psi): 0.8108431